Terry Peters, PhD, FCCPM


Terry Peters, Robarts Scientist; Professor Medical Imaging; Medical Biophysics; Biomedical Engineering

Why I Became a Scientist


My interest in engineering as a teenager led me to study Electrical Engineering at the University of Canterbury in NZ. Upon entering graduate school, my advisor asked me to embark on a project to reconstruct cross-sectional images from x-rays. This topic – (now known as CT scanning) provided the ideal bridge between engineering and medicine, and this work ultimately led me to an academic position at McGill University and the Montreal Neurological Institute, where I had the opportunity to work with surgeons to apply engineering and imaging technology to guide surgeons during neurosurgery procedures.  My subsequent move from Montreal to London and the Robarts, allowed me to expand my interests in combining imaging and surgery beyond the brain, and currently programs exist in the lab dealing with cardiac and urological surgery in addition to the brain.

Research Summary

Dr. Peters' laboratory is concerned with the development and validation of tools that allow surgeons to make efficient use of images, produced by sophisticated 3-D imaging systems, during surgical procedures. The objective of minimally-invasive neurosurgery is to resect or lesion the smallest volume of brain tissue, causing the least trauma to the patient while achieving the desired therapeutic result.

Research Questions and Disease Implications

Can a combination of ultrasound and virtual reality be employed to provide guidance to surgeons while performing interventions inside the beating heart?

Such a procedure would ultimately permit surgery (valve repair, patching of atrial-septal defects; ablation therapies for abnormal heart behaviour) to be performed without requiring the patient to undergo a sternotomy, (cracking the chest open); stopping the heart; and placing the patient on a heart lung machine. This would eliminate the excessive recovery time required for traditional techniques, and remove the risk of further cardiac or neurological problems that can be induced by attaching the patient to a heart-lung machine.

Can a selected number of images acquired on a standard MRI scanner be combined in such a manner that abnormalities in brain structure and function that cause epilepsy,  be determined with sufficient accuracy to permit the affected region in the brain to be approached and ablated through a simple burr hole in the skull.

Currently localization of epileptic  regions in the brain  is  quite crude, and is often only as specific as to which side of the brain the seizure focus is located. For this reason, often most of the temporal lobe of the brain is removed, even though the affected region may reside within a few cubic millimetres of tissue located within the lobe. Excessive tissue removal can affect speech, cognitive and memory function of patients. Accurate minimally-invasive removal of the focus after identifying this region via  MRI will spare these functions after surgery.

Can real-time ultrasound, when combined with pre-operative CT/MRI and stereoscopic video images, (as seen through an endoscope during laparoscopic tumour resection in the kidney and other abdominal organs), provide the surgeon with additional information about the tumour, allowing its complete removal, while sparing as much surrounding tissue as possible.

The combined use of ultrasound, pre-operative datasets and endoscopic images will enable increased use of minimally invasive techniques to remove tumours from organs in the abdominal cavity, giving the surgeon a complete view of the affected organ and its internal characteristics, and allowing him/her to make informed decisions “on the fly” relating to the amount of tissue that must be resected,  thus sparing healthy tissue, nerves, and vessels that might otherwise be destroyed as part of the surgical procedure.

Education

• B Eng Hons Canterbury (NZ) 1969
• PhD Electrical Engineering  Canterbury (NZ) 1973

Training

• Post Doctoral Fellowship Biozentrum, Basel, Switzerland ,1974
• Fellow Canadian College of Physicists on Medicine (1984)

Awards

• Fellow American Association of Medical Physicists (2003)
• Fellow Institute of Physics (1999)
• Fellow Australasian College of Physical Scientists and Engineers in Medicine (1996)
• Fellow Institute of Electrical and Electronic Engineers (2009)

Publications

Lo J, Moore J, Wedlake C, Guiraudon G, Eagleson R, Peters T., Surgeon-controlled visualization techniques for virtual-reality-guided cardiac surgery.  Health Technology and Informatics 142, 162-167, 2009

Wierzbicki M, *Moore J, Drangova M, Peters TM. Subject-specific heart models for image-guided cardiac surgery. Phys Med Biol. 53(19): 5295–Dec 2008.

Linte CA, Moore J, Wedlake C, Bainbridge D, Guiraudon GG, Jones DL, Peters TM. Inside the beating heart: An in vivo feasibility study on fusing pre- and intra-operative imaging for minimally invasive therapy. Int Journal of Computer Assisted Radiology and Surgery. 4(2): 113-23, 2009.

Bainbridge D, Jones DL, Guiraudon GM, Peters TM. Ultrasound image and augmented reality guidance for off-pump, closed, beating, intracardiac surgery. Artificial Organs. 32(11): 840-845, Nov 2008.

Ren J, Patel RV, McIsaac KA, Guiraudon GM, Peters TM. Dynamic 3D virtual fixtures of the beating heart. IEEE Trans Medical Imaging. 27(8): 1061-1070, Aug 2008.

Linte CA, Wiles AD, Moore J, Wedlake C, Peters TM. Virtual reality-enhanced ultrasound guidance for atrial ablation: In vitro epicardial study. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008: 11th International Conference, New York, NY. September 6-10. Proceedings Part II, LNCS 5242. Springer-Verlag Berlin Heidelberg. D Metaxes et al (Eds). P. 644-51, 2008.

Wilson K, Guiraudon G, Jones D, Linte CA, Wedlake C, Moore J, Peters TM. Dynamic cardiac mapping on patient-specific cardiac models. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008: 11th International Conference, New York, NY. September 6-10. Proceedings Part I, LNCS 5241. Springer-Verlag Berlin Heidelberg. D Metaxes et al (Eds). P. 967-974, 2008.

Linte CA, Moore J, Wiles AD, Wedlake C, Peters TM. Virtual reality-enhanced ultrasound guidance: A novel technique for intracardiac interventions. Comp Aid Surg. 13(2): 82-94, Mar 2008.

Contact Information

Terry M Peters PhD FCCPM, FAAPM, FACPSEM, F Inst P, FIEEE    
Scientist, Robarts Research Institute,                                  
Professor, Medical Imaging, Medical Biophysics, Biomedical Engineering,
Western University,
1151 Richmond Street North, London, Ontario N6A 5B7      
Phone: 519-663-5777 x 24159
Fax:     519-931-5713
Email:  tpeters@robarts.ca
www.imaging.robarts.ca/petergrp/